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Abstract. Latent heat flux is the main indicator of regional water-heat balance and plays an
important role in drought monitoring and water resource management. Here, we attempt to esti-
mate latent heat flux using a two-source energy balance model (TSEB). The decomposition algo-
rithm of soil surface temperature and vegetation canopy temperature is discussed, and it is a key
factor for calculating the latent heat flux in the TSEB model. Temperature decomposition was
conducted using two methods: one is based on a simple linear relationship between the canopy
temperature and directional radiation temperature and the other is based on soil latent heat flux
expressed by the Priestley–Taylor formula. Then, the soil temperature was estimated using the soil
latent heat flux. The estimation of the surface heat flux was based on the soil and vegetation canopy
temperatures. The results show that the Priestley–Taylor formula method provided more accurate
estimates of the latent heat flux than the linear relation method, and the reliability and precision
were improved. The root-mean-squares error of the former method decreased by 38.8% compared
with the latter method. The TSEB model was used to estimate the surface heat flux, and it was
feasible for monitoring drought in typical drought-prone regions. © 2019 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.13.034504]
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1 Introduction

Latent heat flux (λE) and its components, soil and canopy latent heat fluxes, are essential to the
land hydrologic cycle and reflect the quality and energy exchange between the ecosystem and the
atmosphere.1 In agriculture, the accurate estimation of λE and its components is essential for
agricultural irrigation systems and crop harvest predictions.2 If the canopy latent heat flux can be
reduced by changing the microclimate of the crop canopy, then the latent heat flux can contribute
to the production of crops indirectly.3

Thus far, many methods have been proposed to estimate λE from ground-based point obser-
vations or estimation methods.4–7 However, the available observations are not sufficient to reveal
continuous, large-scale variations in λE. Some methods have been proposed to estimate λE from
remote sensing observations at the regional scale. The main methods for estimating λE include
the one-source model (OSM)8–10 and two-source energy balance model (TSEB).11 The OSM
assumes that the land surface is homogeneous and does not distinguish between soil and veg-
etation. This model assumes that the energy exchange interface is a large leaf and that latent heat
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exchange occurs on the leaf surface. However, such a hypothesis is not applicable to sparsely
covered areas, especially in arid and semiarid areas. To overcome the limitation of the OSM, the
TSEB model was first proposed in 1995 (called the N95 model) by Kustas et al.12 and Zhan
et al.13 as a more realistic description of turbulence and radiation exchange over a partial veg-
etation canopy.14 Therefore, the TSEB model has become the main method to estimate the land
surface sensible heat flux (H) and λE.15–19 The TSEB model partitions the underlying surface
into independent sources of soil and vegetation and transmits the sensible and latent heat fluxes
into the atmosphere. The heat flux from the soil surface is assumed to be parallel to the heat flux
from the canopy leaves.11 The parallel agreement may be slightly more appropriate for sparser,
clumped vegetation in a semiarid region because the soil surface interacts less with a sparse
vegetation canopy than a dense vegetation canopy. This partition is reasonable for natural semi-
arid ecosystems or deficit-irrigated crops in arid and semiarid regions where water is limited over
a wide range of regions.20 The TSEB model is mainly used to improve the estimation accuracy
of latent heat fluxes in partial vegetation cover regions.11,21–23 Previous studies have found that
the TSEB model is advantageous over the OSM, especially for sparse surfaces.11 In the TSEB
model, the soil and canopy latent heat fluxes are obtained based on the energy balance
equation. 24 Finally, the latent heat flux (soil plus canopy latent heat flux) is obtained.

The directional radiometric temperature (TR) is a very important factor for estimating land
surface heat fluxes. In the estimation of land surface fluxes, there are a wide range of operational
remote sensing models depending on the use of TR.

25 In the TSEB model, TR is expressed as a
composite of the vegetation canopy (Tc) and soil surface (Ts) temperatures.11 When the values of
Tc and Ts are obtained, the net radiation and surface fluxes can be estimated using the TSEB
model. Hence, the component temperature decomposition is the most important and key problem
for estimating surface heat fluxes. An initial estimation of Tc is made assuming non-water-
stressed conditions, and Tc is estimated by applying the Priestley–Taylor formula,26 which was
proposed by Norman et al.11 There are two methods for estimating Ts. First, Ts is obtained via a
linear relation among Tc, TR , and Ts (termed the TSEB-TR method). This method is applied in
the initial TSEB model,11 and vegetation coverage is used as an input parameter in this method.
Second, obtaining Ts first involves using the Priestley–Taylor formula to estimate the soil surface
latent flux;27 then, the energy balance equation is used to calculate Ts (termed the TSEB-PT
method). It is necessary to determine which of these two methods is more appropriate for cal-
culating soil surface temperature in arid and semiarid regions. The best method can be deter-
mined by comparing the two methods. The appropriate Ts parameterization method is of great
significance for improving the accuracy of heat flux estimation in arid areas.

In this paper, we report on estimates of surface latent heat fluxes in an oasis utilizing a TSEB
model based on land surface temperature (LST) decomposition. The main objectives were as
follows: (i) we apply two different methods to decompose the LST into Tc and Ts; (ii) based on
the component temperature decomposition results, the heat flux is estimated and compared with
the observed data; and (iii) the available energy and turbulent energy fluxes are compared
between the two methods to reveal the energy balance problem.

2 Materials and Methods

2.1 Study Area

For this study, the middle reaches of the Heihe River basin were selected. The elevation is
∼1550 m. The scope of the study area is 30 km × 30 km, including a kernel research region
of ∼5 × 5 km, located in the middle of the Hexi Corridor, Gansu Province, China (Fig. 1).
Less precipitation occurs in this area, which is a typical, temperate, dry continental climate, and
evaporation is very large. From 1960 to 2000, the average annual temperature and precipitation
were 7.2°C and 126.7 mm,28 respectively. The vegetation is seasonal, and plants grow sparsely in
natural environments. In oasis areas, the agriculture is irrigated. July and August are the peak
seasons for vegetation growth.

The underlying surfaces in the research area are cropland, sandy desert, desert steppe, the Gobi
Desert, wetland, and residential areas (Fig. 2). Vegetation is rare in the natural environment, and the
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Fig. 1 Location of the study area in the middle reaches of the Heihe River basin, Gansu, China.

Fig. 2 Spatial distribution of the AWS sites and land use classifications used in this study.
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main vegetation on the surface is crop plants. The main irrigated agriculture is maize; in this study,
the maize was seeded in April, the planting density was 10.6 seeds m−2, the row spacing was
43 cm, and the plant spacing was 22 cm. The maize crops used a water-saving drip irrigation
system. There was no significant difference in the spatial heterogeneity at pixel scales.

2.2 Remote Sensing Data

The satellite data were obtained from advanced spaceborne thermal emission and reflection radi-
ometer (ASTER) satellite images. The ASTER sensor provides 14 bands of spectral information,
including visible and near-infrared, shortwave infrared (SWIR), and thermal infrared (TIR).
ASTER has five thermal wave bands ranging from 8 to 12 μm, with a spatial resolution of
90 m, which is resampled to 30 m. In this study, we selected nine clear-sky ASTER images,
and the day of year (DOY) values were from June to September 2012 (DOY 167, 176, 192, 215,
224, 231, 240, 247, and 256).

The LST and emissivity (LSE) information were derived from ASTER data using the TES
algorithm29 combined with the water vapor scaling (WVS) atmospheric correction method.30 In
this paper, the downloaded ASTER LST and LSE dataset in 2012 in the middle reaches of the
Heihe River Basin was used as the estimation values of surface temperature.31 The accuracy of
the LST retrieved with the TES algorithm is within 1.5 K of the absolute value, and the accuracy
of the emissivity is within 0.015 of the absolute value.29,32

2.3 Observational Data

The ground observation data came from the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) dataset. The overall objective of HiWATER was to enhance the appli-
cability of remote sensing in integrated ecohydrological studies and water resource management
at the basin scale.33 The HiWATER experiment has a good research foundation and abundant
data accumulation.33 The data are open, shared, and can be downloaded for free.34 The obser-
vational data include automatic weather station (AWS) and eddy covariance (EC) data. The spa-
tial distribution of the observation sites is shown in Fig. 2.

The observational data spanned the period from May to September 2012, and 17 EC obser-
vations in this region were used. The sonic anemometers of the ECs were installed at heights of
∼2.81 and 3.15 m except for one EC with a height of 34 m in the upper layer of the Daman
superstation. Five EC combinations were used in the matrices, namely, CSAT3 and Li7500 [sites
2, 5, 8, 10, 11, 12, 14, and the Batman Gobi site (GB), Shenshawo desert site (SSW), and
Huazhaizi desert steppe site (HZZ)], CSAT3 and Li7500A (sites 4, 6, 7, 13, and 15),
CSAT3 and EC150 (site 17), Gill and Li7500 (site 16), and Gill and Li7500A (sites 1, 3, 9,
and the Zhangye wetland site).28 The sampling frequency of the EC instrument was 10 Hz, and
the average value over 30 min was recorded. The data record was based on Beijing time.

The AWS observation matrix in the middle reaches of the Heihe River basin contained 21
sites (Fig. 2). The site locations included a vegetable field (AWS 01), maize fields (AWS 02, 03,
05 to 13), village (AWS04), orchard (AWS17), GB (AWS 18), SSW (AWS 19), HZZ (AWS 20),
and wetland (AWS 21). The AWSs included the following instruments: HMP45C (Vaisala, Inc.,
Finland), 010C-1/020C-1 (Metone, Inc.), Kipp and Zonen CM3 (Campbell Scientific Ltd.),
HFP01 (Campbell Scientific Ltd.), and Campbell 109 (Campbell Scientific Ltd.).28

Soil temperature probes (Campbell 109) were placed on the ground and buried at depths of 2,
4, 10, 20, 40, 80, 120, and 160 cm below the ground to ensure 144 data points per day (every
10 min). In this paper, the surface temperature of the soil at 0 cm was used. Time was consistent
with the overpass times of the ASTER satellite.

2.4 Data Processing

2.4.1 Footprint model

The footprint is also called the source weight function. The area that contributes most to the flux
observations is called the flux contribution area or source area.35 The purpose of the flux
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observation footprint and source area is to solve the problem of point-to-surface or line-to-sur-
face spatial representation, which should not be ignored in flux observations. The range of flux
sources can be used to evaluate the spatial representativeness of flux data quantitatively.36 The
characteristics of the EC footprint area were analyzed in other regions,37 and then the flux source
area model of Schmid38 was applied to obtain the flux footprint of a single point. However, Liu
et al.28 applied the Euler analytical flux footprint model to obtain the flux footprint of single-
point vertical flux measurements39 and considered the flux contribution of the chosen total
source area to be 80%.

2.4.2 LAI measured

LAI measurements were collected using an LAI-2000 plant canopy analyzer (PCA, Li-Cor,
Lincoln, Nebraska). The collection time was concentrated between 07:00 and 10:00 a.m. to
avoid errors caused by direct sunlight. During data acquisition, eight points were uniformly
selected in each sample location and the 30 × 30 m surrounding area, and nine LAI data points
were obtained; then, the average value was calculated to represent the sample area.

2.4.3 LST estimate

LST was estimated from the upwelling and downwelling longwave radiation data observed on
the ground as follows:40

EQ-TARGET;temp:intralink-;e001;116;482LST ¼ ½ðR↑
lw − ð1 − εÞR↓

lwÞ∕ðεσÞ�1∕4; (1)

where R↓
lw is the longwave radiation from the sky; R↑

lw is the longwave radiation from the land
surface; ε is the emissivity of the surface broadband radiation, which was assigned an empirical
value of 0.985; and σ is the Stefan–Boltzmann’s constant (5.67 × 10−8 Wm−2 K−4). In this
paper, the value of the LST’s surface estimation was approximately regarded as the observed
LST.

2.5 TSEB Model

In the TSEB model, the latent heat flux (λE) was partitioned into vegetation canopy (λEc) and
soil surface (λEs) components fluxes, and λEc and λEs are expressed as the remainders of the soil
and vegetation energy balance:

EQ-TARGET;temp:intralink-;e002;116;315λEc ¼ Rnc −Hc; (2)

EQ-TARGET;temp:intralink-;e003;116;272λEs ¼ Rns −Hs − G; (3)

where Hc and Hs are the sensible heat fluxes of the vegetation canopy and soil surface, respec-
tively, G is the soil heat flux, and Rns and Rnc are the soil surface and vegetation canopy net
radiation, respectively. The values of Rns and Rnc are estimated using longwave and shortwave
radiation.15

G is estimated using the model given by Santanello and Friedl,41 whereG is a function of Rns

and expressed as follows:

EQ-TARGET;temp:intralink-;e004;116;190G ¼ a cos½2πðtþ cÞ∕b�Rns Rns > 0; (4)

where t is the solar time angle (s) and a, b, and c are empirical constants (a ¼ 0.30,
b ¼ 86; 400 s, and c ¼ 3600 s20,42).

H is estimated using the temperature gradient-transport and resistance networks. The sensible
heat flux for the vegetation canopy and soil surface were considered to be parallel to each other.11

Therefore, the sensible heat fluxes from the soil and vegetation and the sensible flux of soil plus
vegetation can be expressed as follows:
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EQ-TARGET;temp:intralink-;e005;116;735Hc ¼ ρCp
Tc − Ta

Ra
; (5)

EQ-TARGET;temp:intralink-;e006;116;689Hs ¼ ρCp
Ts − Ta

Rs þ Ra
; (6)

EQ-TARGET;temp:intralink-;e007;116;655H ¼ ρCp

�
Tc − Ta

Ra
þ Ts − Ta

Ra þ Rs

�
; (7)

where ρ is the air density (kgm−3), Ta is the air temperature at the reference height (K); Cp is the
volumetric heat capacity of air (assumed to be a constant at 1013 Jkg−1 K−1); Rs is the resistance
to heat flow in the boundary layer immediately above the soil surface (sm−1), which was esti-
mated according to Kustas et al.;43 and Ra is the aerodynamic resistance (sm−1), and the value of
Ra in the surface layer was estimated according to Brutsaert.44

The values of Hc and Hs were determined using Eqs. (5) and (6), where the calculations of
the parameters Tc and Ts are very important, as the accuracies of Tc and Ts affect the sensible
heat flux results. In fact, even with portable infrared thermometers being used in a small-scale
region, Tc and Ts are difficult to obtain.45 Therefore, the decomposition of Tc and Ts from the
LST retrieval was determined to be an effective method.

2.6 Component Temperature Decomposition

2.6.1 TSEB-TR method

The Priestley–Taylor formula, which was proposed by Norman et al.11 and supported by Kustas
and Anderson25 and Agam et al.,27 was applied to estimate Tc:

26

EQ-TARGET;temp:intralink-;e008;116;423Tc ¼ Ta þ
RncRa

ρcp

�
1 − αcfg

Δ
Δþ γ

�
; (8)

where αc is the Priestley–Taylor parameter for the canopy, Δ is the slope of the saturation vapor
pressure versus temperature curve (kPaK−1), γ is the psychrometric constant (0.066 kPaK−1),
and fg is the fraction of the leaf area index that is green. The value of fg can be estimated using
remote sensing data.46,47 Initial estimates of Rnc were estimated in the original form of the TSEB
model11 and expressed as follows:

EQ-TARGET;temp:intralink-;e009;116;316Rnc ¼ Rn½1 − expð−βLAIÞ�; (9)

EQ-TARGET;temp:intralink-;e010;116;273LAI ¼ −2 cosðθÞ lnð1 − fcÞ; (10)

where β is the extinction coefficient, (β ≈ 0.9515), LAI is the leaf area index, fc is the vegetation
cover fraction, and θ is the zenith angle.

In the TSEB-TR method, the LST retrieval from the TIR remote sensing data is regarded as
TR rather than the aerodynamic temperature in the TSEB model.11 TR is obtained as a weighted
composite of Tc and Ts. The Ts value was estimated based on fc. This method was proposed by
Norman et al.,11 and the expression is as follows:

EQ-TARGET;temp:intralink-;e011;116;191Ts ¼
�
εT4

R − εcfcT4
c

εsð1 − fcÞ
�
1∕4

; (11)

EQ-TARGET;temp:intralink-;e012;116;133ε ¼ εcfc þ εsð1 − fcÞ þ dε; (12)

EQ-TARGET;temp:intralink-;e013;116;111fc ¼
NDVI − NDVIs
NDVIv − NDVIs

; (13)

where NDVI is the normalized differential vegetation index, NDVIs represents the NDVI in
areas completely covered by bare soil or vegetation-free areas, and NDVIv represents the
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NDVI in areas completely covered by vegetation. Here, εc and εs are the emissivities of full
vegetation and bare soil, respectively, and the values of εc and εs in this paper are 0.98 and
0.95, respectively. The emissivity of a heterogeneous surface is expressed in previous
studies.48,49 Note that dε is the multiple scattering contribution caused by the internal combi-
nation of a pixel and emissivity.

2.6.2 TSEB-PT method

Agam et al.27 developed a conceptual relation between αbulk (bulk α)50 and both αs and αc. For
this reason, the estimation of λEs can be estimated using Priestley–Taylor equation. However,
under the condition of high vegetation coverage and advection, αc is difficult to adjust, which
may lead to an overestimation of λEs.

51 On this basis, Song et al.42 proposed to estimate λEs

based on the TSEB-A model. The method added soil water stress factors controlled by soil water
to estimate λEs under dry surface conditions. In agricultural experiments, the TSEB-A method is
more likely to produce smaller errors in estimating Ts, Tc , and λE, especially in the case of higher
vegetation coverage.42

Based on the TSEB-A model, λEs is expressed as follows:

EQ-TARGET;temp:intralink-;e014;116;531λEs ¼ fswαs
Δ

Δþ γ
ðRns − GÞ; (14)

where fsw is the soil water stress, which is used to adjust soil evaporation under drier surface
conditions.42 The value of fsw can be estimated using the surface the soil water content (0 to
10 cm).52 αs is the Priestley–Taylor parameter applied to the soil. Rns can be estimated using the
exponential extinction of the net radiation;15 however, this method can result in an error of over
50 Wm−2. Hence, in this study, Rns is estimated using longwave and shortwave net soil
radiation.15 Ts is solved by combining Eqs. (6) and (14):

EQ-TARGET;temp:intralink-;e015;116;415Ts ¼ Ta þ
ðRa þ RsÞ

ρcp

��
1 − fswαs

Δ
Δþ γ

�
ðRns − GÞ

�
; (15)

where αs and αc are given by Agam et al.;27 the other terms were previously defined in this paper.
In the TSEB-PT method, the value of Tc is estimated using Eq. (8), and Ts is estimated using

Eq. (15). However, Tc and Ts are estimated using the soil and vegetation net radiation formu-
las,15,42 respectively. In this case, Tc and Ts are solved using a secant method. Determining the
soil moisture is a key problem. The water content of the observation site in the study area is
observed by a reflectometer at the depth of 0 to 10 cm, and the average value is estimated.

2.7 Validation of the Estimation Results

Based on the geolocation information (latitude and longitude) of each site, the estimated values
were extracted for the pixel closest to the observation site. Next, the estimated values were
matched with the ground observation according to the satellite observation time. If the obser-
vation values were missing, the corresponding remote sensing images were removed. In addi-
tion, all valid points were also manually examined to exclude cloud-contaminated pixels with
unreasonable values.

For model evaluation, surface energy fluxes (Rn, λE, H, and G) from the flux datasets
(observed values) were compared to model outputs (estimated values) using different methods.53

These methods include the root-mean-squares error (RMSE), mean absolute error (MAE), and
Pearson correlation coefficient (R). For the calculation formulas of R, RMSE, and MAE, refer to
Norman et al.11 R was used to indicate the degree of correlation between estimated and observed
surface energy fluxes; the RMSE was used to measure differences in accuracy between the
model-estimated values and observations from the flux towers; the MAE was used to indicate
the magnitude of the average absolute difference in the observed and estimated values; and
finally, the mean absolute percentage error (MAPE) was used to express the magnitude of the
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absolute difference between the observed and estimated values relative to the observed aver-
age value.

3 Results

3.1 LAI

The LAI was estimated based on NDVI using Eqs. (10) and (13). The estimated values of LAI
range widely from 0.524 to 3.89. The estimated LAI values are compared with the average values
of multiple observations at adjacent locations of observation stations. In the LAI remote sensing
image, the pixels corresponding to the geographic coordinates of the ground observation points
are found out. The pixel values were used as the estimated LAI values. Then, the LAI estimation
was validated based on the ground observation values. The estimated LAI validation only con-
sidered the corresponding pixels at the observation site.

Based on the simulation results (Fig. 3), in the early stage of crop growth (form DOY 151 to
DOY 176), the estimated LAI is less than the field measurement value, with a relative error of
∼12.8%. The period up to DOY 192 corresponds to the maximum LAI. Moreover, the estimated
LAI value is 3.89, and the observed LAI value is 4.02. These values correspond to the middle of
crop growth (from DOY 176 to DOY 240), and there is little difference between the estimated
and observed values. At the later stage of crop growth (from DOY 240 to DOY 256), the LAI
decreases gradually as the leaves begin to senesce. The observed LAI value in the late stage of
crop growth is greater than that of the estimated value [Fig. 3(a)]. The largest difference occurs
on DOY 256, when the leaves are gradually dried up. Over the entire season of crop growth, the
estimated values are consistent with the observed values in time and space.

According to the scatter plots of the LAI using the estimated and observed values [Fig. 3(b)],
the correlation between them is quite good (R ¼ 0.94); the RMSE and MAE are 0.44 and 0.33,
respectively. The estimated LAI is generally below the 1:1 line, indicating that it is below the
observed value.

3.2 Verification of the Estimated LST

The estimated LST values were compared with the LST values derived from land surface esti-
mation based on Eq. (1). The results show that the estimated LST values are highly accurate,
therefore the result is reasonable (Fig. 4). The estimated values are quite similar to the observed
values over a reasonable range (290 K < LST < 325 K), and the time distribution trend is similar
to that of the air temperature (air temperature data not shown). R is 0.96, reflecting a strong
correlation between the estimated and observed values. The MAE and RMSE are 1.37 and
1.6 K, respectively. Both values are less than 2 K. The MAE in this study fits well with the
results by Gillespie et al.,29 where the MAE was within 1.5 K. The 1:1 line shows good con-
formity between the estimated and observed values. The slope of the linear regression equation

Fig. 3 Estimated LAI values compared with the observed LAI values during the crop growing
season.
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between the estimated and observed values is 0.88, and the fitting degree between these values is
better.

3.3 Estimated versus Observed Soil Surface Temperatures

The vegetation temperature difference obtained by the two methods is not obvious in the spatial
distribution, and the canopy temperature is relatively uniform (figure not shown). The images
show the results of Ts using the TSEB-PT method (Fig. 5). Considering that the LAI values of
deserts, the Gobi, and water bodies are very small, the LST of the previously retrieved desert,
Gobi, and water body areas can be approximated as Ts. Therefore, the Gobi, desert, wetland,
water body, and residential areas are masked by the land cover types, and Ts in oasis areas is
estimated. Affected by the shadows of trees and buildings, Ts is lower around towns and villages
and higher near desert and Gobi farmland. Overall, Ts does not change significantly in space.

The difference in Ts estimated by the TSEB-PT and TSEB-TR methods is shown in Fig. 6.
Significant differences in Ts are found between the two results. The Ts difference is shown in
Figs. 6(a) to 6(d) and 6(g), ranging from 5 to 10 K, and Figs. 6(e), 6(f), 6(h), and 6(i) have a Ts

difference of more than 10 K. The spatial variation shows that the difference between Ts esti-
mated using the two methods is large. This tendency indicates that one of the two methods for
calculating Ts may overestimate Ts. Therefore, it is very important to choose the appropriate
decomposition method for improving the accuracy of surface heat flux estimation.

The time consistency between the observed and estimated values of the average Ts in arid and
semiarid oasis areas is shown in Fig. 7(a). During the early season when the LAI does not reach
its maximum value, the surface vegetation is partly covered and the vegetation and soil are dis-
tinct. In this case, there are significant differences between the estimated and observed average
temperatures and the estimated values are overestimated. During the mid-season period (from
DOY 176 to 240) when the LAI reaches a maximum, fc is close to 1.0, the leaves intercept the
sunlight before reaching the surface, and the observation of the average Ts is affected by veg-
etation canopy shadows. At this time, Ts obtained by the two methods is larger than the observed
Ts, except DOY 176, the average estimated value by the TSEB-PT method is slightly lower than
the average observed value. During the end of crop growth, the average Ts estimated with the
TSEB-PT method is close to the observed value, but the average Ts estimated using the TSEB-
TR method is larger than the observed value [Fig. 7(a)]. The MAEs between the TSEB-PT and
TSEB-TR methods are compared in Fig. 7(b). The TSEB-TR method resulted in an MAE value
greater than that obtained using the TSEB-PT method except for DOY 240. Using the TSEB-TR

method, the maximum MAE appears on DOY 231, which is 7.25 K. The maximum MAE is
2.76 K for the TSEB-PT method, which appears on DOY 240. The minimum MAE values
appear on DOY 224, which are 0.86 and 1.65 K, respectively.

Fig. 4 Comparison of the estimated and observed LSTs in the study area; the LST values were
retrieved from ASTER data. The line represents a 1:1 relationship.
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The estimated and observed values of Ts obtained using the TSEB-PT method are consistent;
the R value is 0.92, and the RMSE and MAE are 2.32 and 2.01 K, respectively [Fig. 8(a)].
However, Ts derived from the TSEB-TR method has R, RMSE, and MAE values of 0.88,
5.04, and 4.01 K, respectively [Fig. 8(b)]. The discrepancy between the TSEB-TR and
TSEB-PT methods is indicated by differences in the RMSE and MAE. The RMSE and
MAE results obtained using the TSEB-PT method are relatively small compared to those
obtained using the TSEB-TR method. RMSE% and MAE% as a percentage of the observed
Ts average are 0.78% and 0.67% by use of the TSEB-PT method, and 1.69% and 1.3% by use
of the TSEB-TR method. The error span is large; hence, the TSEB-TR method may be limited
when estimating Ts. The estimated values of the two methods are overestimated compared with
the observed values. The results show that when using the TSEB-PT method, the data points are
more concentrated. In contrast, the results from the TSEB-TR method are more scattered.

3.4 Land Surface Heat Fluxes Estimated with the TSEB Model

The average Rn andG values were estimated for selected days. These values reflect the changing
trend over time and the discrepancy between the estimated and observed values. The results
show that the average Rn ranges from 500 to 700 Wm−2 [Fig. 9(a)]. The observed Rn values
obtained by the use of the TSEB-PT method are underestimated, especially in the middle and late

Fig. 5 Soil temperature images from the component temperature decomposition using the TSEB-
PT method. The oasis area excludes Gobi, desert, wetland, water body, and residential areas.
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Fig. 7 (a) Average soil temperature values using the TSEB-PT and TSEB-TR methods compared
to those observed on select days. (b) MAE between the observed and estimated values.

Fig. 6 Soil surface temperature difference estimated using the TSEB-TR and TSEB-PT methods.
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stages of crop growth. Using the TSEB-TR method, the estimated value of Rn is larger than the
observed value, although the difference is not obvious. The discrepancy between the estimated
and observed Rn values is smaller using the TSEB-TR method than the TSEB-PT method. For
the TSEB-PT method, the largest discrepancy between the estimated and observed average val-
ues occurs on DOY 215, and the difference between them is 61 Wm−2. Overall, the difference of
the results among the estimated average value and the observed average value is slight.

The range of the observed and estimated values of G is from 80 to 200 Wm−2 [Fig. 9(b)].
Compared with the observed average value, the estimated value of G is larger when using the
TSEB-TR method. Using the TSEB-PT method, the difference between the estimated and
observed values of average G is smaller than that of the TSEB-TR method. The difference
between the observed and estimated average G values is largest in the middle and late stages

Fig. 9 Comparison of the average estimated net radiation and soil surface heat fluxes using the
TSEB-TR and TSEB-PT methods on select days in an oasis. (a) Rn, (b) G, (c) H , and (d) λE .

Fig. 8 Comparison of the estimated and observed surface temperatures using (a) the TSEB-PT
and (b) TSEB-TR methods in irrigated cropland. The 1:1 line represents perfect agreement with
the observations.
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of crop growth, which is mainly because G is a function of Rn and can be approximated as a
linear relationship. Although the estimated average value is higher than the observed average
value, it will not adversely affect the results of estimating λE.

The average estimated H is greater using the TSEB-PT method than using the TSEB-TR

method [Fig. 9(c)]. Compared with the observed values, H estimated via the TSEB-PT method
is overestimated in the early stage of crop growth but underestimated in the middle and late
stages. As a result, the TSEB-TR method underestimates the entire crop growth season.
Furthermore, the observed value of H is larger than the estimated value from DOY 240 to
256, especially on DOY 256, where the observed average H is 211 Wm−2, and the estimated
values for the TSEB-PT and TSEB-TR methods are 156 and 73 Wm−2, respectively.

The average values of λE is 200 to 600 Wm−2 [Fig. 9(d)]. The observed and estimated λE
increases from DOY 167 to DOY 192 and then decreases until DOY 256. The average λE esti-
mated via the TSEB-PT method and TSEB-TR method is larger than the observed value almost
throughout the crop growing season. The largest difference occurs from DOY 192 to DOY 256.
Moreover, λE estimated using the TSEB-PT method underestimates λE on DOY 176 and
DOY192 and overestimates λE at other times. The time trend shows that the estimated results
from the TSEB-PT method are in good agreement with the observed values, with results that are
better than the TSEB-TR method. The reason for the decrease in λE in the later stage of crop
growth is that with the beginning of leaf senescence and withering, the transpiration of vegeta-
tion tends to stop, the water content of farmland decreases, and the evaporation of surface
decreases, resulting in low λE values.

Previous studies have examined the sources of flux measurements in depth in this study area.
The results have shown that the main contribution source area of EC measurements per month is
within 180 m radius of the Yingke (YK, 100°24′37"E, 38°02′40"N) observation point at an 80%
contribution level, and the contribution rate increases to its maximum value at ∼30 m from the
observation point.12 The main wind direction in July is from the north and west. Therefore, these
two directions contribute at this time. At this time, the main source areas of EC are wheat and
maize underlying surfaces. The main source area for the LAS (with a path length of 2390 m)
stretches along a region that is ∼2000 m long and 700 m wide.28

Based on the energy balance principle, H þ λE (turbulent energy fluxes) near the surface
should be equal to Rn − G (the available energy). The ratio of the turbulent energy fluxes
to the available energy (energy balance ratio, EBR) should be equal to 1.0, where EBR ¼
ðH þ λEÞ∕ðRn − GÞ. However, due to the existence of systematic errors, the EBR ranges from
0.7 to 0.9.54 In this paper, average values of the observations from all sites are used to calculate
the EBR. The results show that the EBR ranges from 0.73 to 0.98, with an average value of 0.88,
which is roughly the same as that of Wilson et al.5 In other research areas, when only EC data
from 06:00 to 18:00 are considered, EBR is about 0.78.55 This result indicates that the energy
closure reflected by the observed data at different sites is consistent. However, comparing the
results obtained by the TSEB-PT and TSEB-TR methods, EBR is ∼1.0. Therefore, the energy
closure is very good, and land surface energy balance is balanced.

The reliability of the TSEB model-derived net surface radiation and surface heat fluxes is
assessed using two different methods. Scatter plots show dispersion for both the TSEB-PT and
TSEB-TR methods (Fig. 10). A statistical comparison of the model output and observations is
shown in Table 1 to demonstrate accuracy and consistency. Based on these results, there are some
differences between the TSEB-PT and TSEB-TR methods.

Rn is underestimated by the TSEB-PT method, whereas using the TSEB-TR method Rn is
overestimated. However, no significant difference is found in these estimates using the different
methods. Based on the MAE and RMSE of Rn, there is little difference between the RMSE and
MAE of the two methods, and the difference in MAPE is not obvious (5.97% versus 2.42%)
(Table 1). The RMSE% value has little difference (2.62% versus 4.12%). The consistency
between Rn estimated using the TSEB-TR method and the observed values is poor
(R ¼ 0.72) [Fig. 10(a)]. G has a similar RMSE and MAE for the TSEB-TR and TSEB-PT meth-
ods (Table 1). A comparison of the estimated and observed values of G shows that most of the
points are located above the 1:1 line for the TSEB-TR method and TSEB-PT method. These
results indicate a tendency for the TSEB-TR method to overestimateG and the TSEB-PT method
to underestimate G [Fig. 10(b)]. When G is less than 60 Wm−2, the point is close to 1:1 line,
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whereas when G is greater than 60 Wm−2, the estimated value of the TSEB-PT method is near
the 1:1 line but the estimated value of the TSEB-TR method is far from the 1:1 line, which
increases the scatter of points. The correlation between estimated and observed values is good,
0.92 and 0.86, respectively.

Most of the values of H range from 0 to 200 Wm−2 [Fig. 10(c)]. Comparisons of the
observed values and estimated values of the sites show that there are obvious differences between
the TSEB-PT and TSEB-TR methods. For the TSEB-TR method, H is underestimated, and
there is significantly larger scatter. However, using the TSEB-PT method, in the early stage

Table 1 Statistical results of the estimated land surface net radiation and surface heat fluxes
compared to the observations using the TSEB-PT and TSEB-TR methods. See Fig. 10 for scatter
plots.

TSEB-PT TSEB-TR

Rn G H λE Rn G H λE

Observed average 625.04 125.23 87.48 364.01 625.04 125.23 87.48 364.01

Estimated average 593.51 115.02 81.28 399.26 634.49 160.73 32.99 445.35

RMSE 16.39 9.99 22.51 46.75 25.79 10.71 61.54 76.49

% RMSE 2.62 7.97 25.73 12.84 4.12 8.55 70.34 21.01

MAE 13.83 7.42 14.78 34.45 19.54 8.6 40.38 55.42

MAPE 5.97 10.84 32.83 15.06 2.42 28.91 62.14 27.14

R 0.9 0.92 0.98 0.95 0.72 0.86 0.81 0.75
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Fig. 10 TSEB model results using the TSEB-PT and TSEB-TR methods compared to the
observed values from the HiWATER measurements for (a) Rn , (b) G, (c) H, and (d) λE . The
1:1 line represents perfect agreement with the observations.
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of crop growth, H is overestimated, but underestimated H in the later stage of crop growth.
Nevertheless, the observed values agree well with the estimated values, and the points are near
of the 1:1 line with less scatter. The statistical results of estimation and observation H show that
the TSEB-PT method has good correlation (R ¼ 0.98), RMSE and MAE are 22.51 and
14.78 Wm−2, respectively, and MAPE is 32.83%. Compared with the TSEB-PT method, the
MAPE is large (62.14%) and there is low correlation (R ¼ 0.81) when using the TSEB-TR

method (see Table 1).
Under the studied arid and semiarid conditions, the TSEB model solves the problem of tur-

bulent flux distribution between the soil and canopy. Although no measurements of Tc are avail-
able for a proper evaluation of this partitioning using the TSEB-TR and TSEB-PTmethods. From
an energy balance perspective, λE can be estimated as the residual of Rn, H, and G. Using the
TSEB-TR method, the underestimation of H will cause an overestimation of λE. The TSEB-TR

method results in greater scatter about the 1:1 line for λE, with greater RMSE and MAE values
than the TSEB-PT method. The RMSE accuracy increases by 38.8%, and the MAE accuracy
increases by 37.9% when applying the TSEB-PT method [Fig. 10(d) and Table 1]. The results
show that the estimated values of the TSEB-PT method are in good agreement with the
observed value.

4 Discussion

The validation of LST inversion via ground observation has been the primary method.56 We
validated ASTER LST with 111 point-based LST estimates. The statistical results showed that
the MAE and RMSE are 1.37 and 1.6 K (Fig. 4), respectively. The correlation coefficient
between the estimated value and the observed value is 0.96. The correlation between the esti-
mated values and observed values is very good, and the accuracy is high; thus, the ASTER LST
products is believable. The dataset provides reliable input data for component temperature
decomposition and remote sensing estimation of surface net radiation and heat fluxes.

Previous authors have also studied the temperature decomposition of components in this
study area, 42 but no comparative study has been made on the application of other methods
in this area. We found that the TSEB-PT method is more suitable for component temperature
decomposition. The error between the observed and estimated values is relatively small, and the
precision is high. However, when using the TSEB-TR method for temperature decomposition,
the change in vegetation coverage should be considered.11 For the peak LAI, the vegetation
coverage is close to 1.0, the estimated soil surface temperature tends to infinity, and Ts is over-
estimated. In general, the average Ts estimated by the two methods is larger than the observed
average Ts, which may also be the result of the observed Ts representing shaded areas in some
farmland regions. Although the two methods overestimate Ts, the relative error for the TSEB-PT
method is low. The TSEB-PT method provides a method to improve the temperature decom-
position accuracy of components similar to that found by Colaizzi et al.,57 who used the TSEB-
Tc-Ts method to perform temperature decomposition.

The terrain in the study area is relatively flat; therefore, we did not consider the effect of
terrain on the Rn calculations. Using the TSEB-PT method, R is 0.9 in this study; however,
other studies have used MODIS data58 to estimate annual and instantaneous net radiation in
this region, where the affecting factors considered included weather conditions, solar zenith
angle, volumetric soil moisture, season, and NDVI, and a higher correlation coefficient
(R ¼ 0.94) was found than the value obtained in this study. Therefore, in the case of more veri-
fication points and long time series, the accuracy of Rn will be improved. The vegetation in the
study area is mainly maize, and natural vegetation is scarce; in this case, the RMSE and MAE
(RMSE ¼ 16.39 Wm−2 andMAE ¼ 13.83 Wm−2) in this paper are less than those reported by
Colaizzi et al.,20 where the results included night-time data, and the RMSE and MAE were 30
and 23 Wm−2, respectively. Using the TSEB-PT method, the MAE is less than the MAE
reported by Kustas et al.,59 who used the TSEB-TR method and showed that the surface was
covered with grass and the MAE was 15 Wm−2.

Although the model estimation of the G is reasonable. A difference is found between the
observed and estimated average G values from the two methods. Significant differences appear
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most in crop growing seasons. Early in the season, the canopy coverage is sparse. The net short-
wave irradiance to the soil increases by up to 80% of the global shortwave irradiance, resulting in
a sharp increase in Rns; therefore, the value ofG increases. Comparing estimated versus observed
G [Fig. 10(b)] revealed more scatter in G estimates using the TSEB-TR method compared to the
version using the TSEB-PT method. This is attributed to the parameterization of G to a constant
proportion of Rn. Field observations show that G∕Rn can range from 0.05 to 0.50.60

Overestimation of Rn will inevitably lead to overestimation of G. The results based on the
TSEB-PT method are better; the RMSE and MAE of G are similar to those reported by
Colaizzi et al.20 where RMSE ¼ 9.3 Wm−2 and MAE ¼ 6.5 Wm−2. However, the RMSE and
MAE results are less in this study than those reported by Norman et al.,11 where the RMSE and
MAE were 28 and 35 Wm−2, respectively.

A previous study showed that H contributed an average of 38% of the total λE for fully
irrigated crops during full canopy conditions.61 In this paper, the temperature decomposition
in the middle and late stages of crop growth limits the accuracy of H. In the middle and later
stages of crop growth during full canopy cover, there are very small differences between the LST
and Tc; hence, the observed and estimated values of Ts are affected by shadows and illumination,
and H is underestimated at the end of crop growth. Similarly, underestimates in H were also
found in agricultural areas by Colaizzi et al.57 Therefore, the method of component temperature
decomposition needs to be improved from the middle stage of crop growth to the harvest season.
In our study, the RMSE and MAE of H estimated using the TSEB-PT method are 22.51 and
14.78 Wm−2, respectively, which are less than the results of field experiments estimated by
Norman et al.,11 where the RMSE and MAE were 37 and 30 Wm−2, respectively.

Using the TSEB-PT method, the unrealistic increase in Ts can be limited when fc is close to
1.0. Under the influence of fc, using the TSEB-TR method, the λE error is larger during the
middle and later stages of crop growth. The λE values in this study is more scattered for the
TSEB-TR method than the TSEB-PT method. Using the TSEB methods, the results show that the
RMSE in λE (RMSE ¼ 46.75 and 76.49 Wm−2, respectively) is lower for farmland, although
these results are better than the RMSE of grassland (RMSE ¼ 84 Wm−2),17 which indicates that
the estimation of λE is different for different underlying surfaces. The soil water stress factors
help regulate λEs under soil drought conditions,42 which improves the estimation accuracy
of λE (MAE ¼ 34.45 Wm−2). However, without considering water stress factors, using the
TSEB-TR method to estimate λE results in a higher MAE (MAE ¼ 55.42 Wm−2), which is
close to those estimated under natural semiarid conditions with high vapor pressure deficit and
low LAI.27

Because the TSEB model estimated λE as a residual of the energy balance equation, biases
from H, Rn, and G might accumulate in the λE estimates and higher nonsystematic errors could
be expected.62 This averages that the estimation errors of Rn, H, and G strongly influence λE
prediction. The TSEB-TR method overestimates λE in the early and middle stages of crop
growth, whereas the TSEB-PT method estimates λE with smaller errors. In the later stage of
crop growth, the canopy contains more nontranspiration elements, which may lead to deviations
in Tc and TR,

20 resulting in an underestimation of H [Fig. 9(c)] and overestimation of λE
[Fig. 9(d)]. Therefore, the uncertainty in the λE estimation and the error in the Rn and H
estimation can explain the discreteness of the λE points in Fig. 10(d). The more discrete the
points are, the higher the error. Although the two methods provide a high correlation (R of
0.95 and 0.75), the MAPE for the TSEB-PT method is less than for the TSEB-TR method
(15.06% versus 27.14%).

5 Conclusions

In this paper, two different methods of component temperature decomposition are compared to
determine the most suitable method in arid and semiarid areas. Although the results of the two
model versions are similar, Ts is overestimated. However, our analysis shows significant
differences between the methods at our study area, and the agreement between the estimated
and observed Ts is better using the TSEB-PT method than using the TSEB-TR method; the
precision is also higher.
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We compared the results of the simulated surface heat flux based on the TSEB model driven
by Ts and Tc in arid and semiarid regions. Choosing the most accurate surface heat flux method
is the primary focus. To conclude, our analysis shows that the TSEB-PT method can be applied
operationally and produces reliable estimates of G, H, and λE in both arid and semiarid regions.
Compared to the TSEB-TR method, the TSEB-PT method provides better estimates of the sur-
face latent heat flux, and the RMSE’s effective accuracy is improved by 38.8% in arid and semi-
arid regions. The TSEB-PT method is a good choice to retrieve surface temperature information
from remote sensing data in semiarid areas. The surface temperature can then be decomposed
into separate soil and vegetation components, which are then used to estimate the surface heat
flux, providing viable results.
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